Huang Lab

Bryan Research Building, rooms 436, 438, 439

Josh Huang, PhD , PI

Email: josh.huang@duke.edu

Office: Bryan Research Building, room 401E

phone: (919) 613-1573

Education

Ph.D., Brandeis University, 1994

We study the development and function of cortical circuits underlying motor control and cognitive processing. Our research program integrates multi-faceted approaches from genetic engineering to single-cell genomics, developmental neurobiology, imaging, electrophysiology, and behavioral analyses, and aims to link fundamental neuroscience to the understanding and treatment of neuropsychiatric disorders.    

Welcome to the Huang Lab!

The overarching goal of the Huang Lab is to apply innovative and multi-disciplinary approaches to study the development and function of neural circuits of the cerebral cortex that enable motor control and cognitive processing. Our starting point is the development of molecular genetic tools to systematically identify and manipulate a diverse array of specific neuronal cell types (i.e. basic circuit elements) in the mouse brain; our recent invention of a RNA-programmable cell targeting and editing method pioneers a new generation of facile and scalable cell type technology, generalizable across animal species, including humans.

To discover the developmental and molecular genetic basis of cortical cell types, we carry out state-of-the-art genetic fate mapping to track their developmental trajectories, from progenitor origin and lineage progression to input-output connectivity in cortical circuits. We then apply cell type targeted single cell transcriptomics and epigenomics to reveal gene expression profiles and genetic programs underlying neuron type identities.

To explore the cell type basis of neural circuit function, we start by designing a variety of [head-constrained as well as free-moving naturalistic] behavioral paradigms to probe the mouse’s motor and cognitive capacities that engage cortical circuits. Guided by insights from behavioral analysis, we apply cell type genetic tools that integrate in vivo imaging, electrophysiology, optogenetic, and anatomic circuit tracing to discover the specific roles of distinct neuron types in cortical circuit operation. By leveraging experimentally accessible neuron types as a solid “middle ground” to navigate across levels and scales of brain organization, our research paradigm coherently integrates multi-disciplinary approaches toward discovering the general principles of cerebral cortex architecture and function, with major implications in understanding and treatment of a variety of neuropsychiatric disorders.

Selected Recent Publications:

Matho KS, Huilgol D, Galbavy W, He M, Kim G, An X, Lu J, Wu P, Di Bella DJ, Shetty AS, Palaniswamy R, Hatfield J, Raudales R, Narasimhan A, Gamache E, Levine JM, Tucciarone J, Szelenyi E, Harris JA, Mitra PP, Osten P, Arlotta P, Huang ZJ. (2021) Genetic dissection of the glutamatergic neuron system in cerebral cortex.  Nature. 2021 Oct;598(7879):182-187. doi: 10.1038/s41586-021-03955-9. Epub 2021 Oct 6. PMID: 34616069

Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. (2021) Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron. 2021 Feb 3;109(3):502-515.e7. doi: 10.1016/j.neuron.2020.11.004. Epub 2020 Dec 7. PMID: 33290732

Kelly, Sean M., Raudales, Ricardo, He, Miao, Lee, Jannifer H., Kim, Yongsoo, Gibb, Leif G., Wu, Priscilla, Matho, Katherine, Osten, Pavel, Graybiel, Ann M., Huang, ZJ. (2018) Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization. Neuron. ISSN 0896-6273

Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. (2017) Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity. Cell 171(3): 522-539. 2017 Sep 20. doi: 10.1016/j.cell.2017.08.032. PubMed PMID: 28942923.

Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. (2017) Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci. 2017 Oct;20(10):1377-1383. doi: 10.1038/nn.4624. Epub 2017 Aug 21. PubMed PMID: 28825718; PubMed Central PMCID: PMC5614838.

Taniguchi H, Lu J, Huang ZJ. (2013) The spatial and temporal origin of chandelier cells in mouse neocortex. Science. 2013 Jan 4;339(6115):70-4. doi: 10.1126/science.1227622. Epub 2012 Nov 22. PubMed PMID: 23180771; PubMed Central PMCID: PMC4017638.

Recent Posts

challenge accepted
News
Monday, January 3, 2022
By Dave Hart

A Bold New Effort Aims to Harness the Mechanisms of Resilience

Event
Wednesday, November 10, 2021 - 12:00
DIBS Cube - Multi-purpose room
Kehali Woldemichael

Kehali Woldemichael (Huang Lab) will present Characterizing the role of visual experience in shaping transcriptomic trajectories during mouse visual cortical development, an analysis of the article by Cheng et al, Vision is Required f

josh huang headshot
News
Wednesday, October 6, 2021

The National Institutes of Health (NIH) has awarded grants to three Duke University School of Medicine faculty members through the NIH Common Fund’s High-Risk, High-Reward Research program.

huang_BrainAtlas
News
Wednesday, October 6, 2021
By Karl Leif Bates

DURHAM, N.C. -- Every great exploration refines the map, and in the case of the massive BRAIN initiative funded by the National Institutes of Health, that new draft of the map has just been released.

Pages